Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Crit Care Explor ; 4(12): e0800, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2313821

ABSTRACT

COVID-19 is a heterogenous disease. Biomarker-based approaches may identify patients at risk for severe disease, who may be more likely to benefit from specific therapies. Our objective was to identify and validate a plasma protein signature for severe COVID-19. DESIGN: Prospective observational cohort study. SETTING: Two hospitals in the United States. PATIENTS: One hundred sixty-seven hospitalized adults with COVID-19. INTERVENTION: None. MEASUREMENTS AND MAIN RESULTS: We measured 713 plasma proteins in 167 hospitalized patients with COVID-19 using a high-throughput platform. We classified patients as nonsevere versus severe COVID-19, defined as the need for high-flow nasal cannula, mechanical ventilation, extracorporeal membrane oxygenation, or death, at study entry and in 7-day intervals thereafter. We compared proteins measured at baseline between these two groups by logistic regression adjusting for age, sex, symptom duration, and comorbidities. We used lead proteins from dysregulated pathways as inputs for elastic net logistic regression to identify a parsimonious signature of severe disease and validated this signature in an external COVID-19 dataset. We tested whether the association between corticosteroid use and mortality varied by protein signature. One hundred ninety-four proteins were associated with severe COVID-19 at the time of hospital admission. Pathway analysis identified multiple pathways associated with inflammatory response and tissue repair programs. Elastic net logistic regression yielded a 14-protein signature that discriminated 90-day mortality in an external cohort with an area under the receiver-operator characteristic curve of 0.92 (95% CI, 0.88-0.95). Classifying patients based on the predicted risk from the signature identified a heterogeneous response to treatment with corticosteroids (p = 0.006). CONCLUSIONS: Inpatients with COVID-19 express heterogeneous patterns of plasma proteins. We propose a 14-protein signature of disease severity that may have value in developing precision medicine approaches for COVID-19 pneumonia.

2.
Critical care explorations ; 4(12), 2022.
Article in English | EuropePMC | ID: covidwho-2147185

ABSTRACT

OBJECTIVES: COVID-19 is a heterogenous disease. Biomarker-based approaches may identify patients at risk for severe disease, who may be more likely to benefit from specific therapies. Our objective was to identify and validate a plasma protein signature for severe COVID-19. DESIGN: Prospective observational cohort study. SETTING: Two hospitals in the United States. PATIENTS: One hundred sixty-seven hospitalized adults with COVID-19. INTERVENTION: None. MEASUREMENTS AND MAIN RESULTS: We measured 713 plasma proteins in 167 hospitalized patients with COVID-19 using a high-throughput platform. We classified patients as nonsevere versus severe COVID-19, defined as the need for high-flow nasal cannula, mechanical ventilation, extracorporeal membrane oxygenation, or death, at study entry and in 7-day intervals thereafter. We compared proteins measured at baseline between these two groups by logistic regression adjusting for age, sex, symptom duration, and comorbidities. We used lead proteins from dysregulated pathways as inputs for elastic net logistic regression to identify a parsimonious signature of severe disease and validated this signature in an external COVID-19 dataset. We tested whether the association between corticosteroid use and mortality varied by protein signature. One hundred ninety-four proteins were associated with severe COVID-19 at the time of hospital admission. Pathway analysis identified multiple pathways associated with inflammatory response and tissue repair programs. Elastic net logistic regression yielded a 14-protein signature that discriminated 90-day mortality in an external cohort with an area under the receiver-operator characteristic curve of 0.92 (95% CI, 0.88–0.95). Classifying patients based on the predicted risk from the signature identified a heterogeneous response to treatment with corticosteroids (p = 0.006). CONCLUSIONS: Inpatients with COVID-19 express heterogeneous patterns of plasma proteins. We propose a 14-protein signature of disease severity that may have value in developing precision medicine approaches for COVID-19 pneumonia.

3.
Chest ; 160(3): 929-943, 2021 09.
Article in English | MEDLINE | ID: covidwho-1220138

ABSTRACT

BACKGROUND: Subphenotypes have been identified in patients with sepsis and ARDS and are associated with different outcomes and responses to therapies. RESEARCH QUESTION: Can unique subphenotypes be identified among critically ill patients with COVID-19? STUDY DESIGN AND METHODS: Using data from a multicenter cohort study that enrolled critically ill patients with COVID-19 from 67 hospitals across the United States, we randomly divided centers into discovery and replication cohorts. We used latent class analysis independently in each cohort to identify subphenotypes based on clinical and laboratory variables. We then analyzed the associations of subphenotypes with 28-day mortality. RESULTS: Latent class analysis identified four subphenotypes (SP) with consistent characteristics across the discovery (45 centers; n = 2,188) and replication (22 centers; n = 1,112) cohorts. SP1 was characterized by shock, acidemia, and multiorgan dysfunction, including acute kidney injury treated with renal replacement therapy. SP2 was characterized by high C-reactive protein, early need for mechanical ventilation, and the highest rate of ARDS. SP3 showed the highest burden of chronic diseases, whereas SP4 demonstrated limited chronic disease burden and mild physiologic abnormalities. Twenty-eight-day mortality in the discovery cohort ranged from 20.6% (SP4) to 52.9% (SP1). Mortality across subphenotypes remained different after adjustment for demographics, comorbidities, organ dysfunction and illness severity, regional and hospital factors. Compared with SP4, the relative risks were as follows: SP1, 1.67 (95% CI, 1.36-2.03); SP2, 1.39 (95% CI, 1.17-1.65); and SP3, 1.39 (95% CI, 1.15-1.67). Findings were similar in the replication cohort. INTERPRETATION: We identified four subphenotypes of COVID-19 critical illness with distinct patterns of clinical and laboratory characteristics, comorbidity burden, and mortality.


Subject(s)
Acute Kidney Injury/therapy , COVID-19/epidemiology , Critical Illness/epidemiology , Pandemics , Renal Replacement Therapy/methods , Acute Kidney Injury/epidemiology , Aged , COVID-19/therapy , Comorbidity , Female , Humans , Male , Middle Aged , SARS-CoV-2 , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL